Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
Am J Nephrol ; 52(10-11): 771-787, 2021.
Article En | MEDLINE | ID: mdl-34753140

BACKGROUND: The kynurenine pathway (KP) is the major catabolic pathway for tryptophan degradation. The KP plays an important role as the sole de novo nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway in normal human physiology and functions as a counter-regulatory mechanism to mitigate immune responses during inflammation. Although the KP has been implicated in a variety of disorders including Huntington's disease, seizures, cardiovascular disease, and osteoporosis, its role in renal diseases is seldom discussed. SUMMARY: This review summarizes the roles of the KP and its metabolites in acute kidney injury (AKI) and chronic kidney disease (CKD) based on current literature evidence. Metabolomics studies demonstrated that the KP metabolites were significantly altered in patients and animal models with AKI or CKD. The diagnostic and prognostic values of the KP metabolites in AKI and CKD were highlighted in cross-sectional and longitudinal human observational studies. The biological impact of the KP on the pathophysiology of AKI and CKD has been studied in experimental models of different etiologies. In particular, the activation of the KP was found to confer protection in animal models of glomerulonephritis, and its immunomodulatory mechanism may involve the regulation of T cell subsets such as Th17 and regulatory T cells. Manipulation of the KP to increase NAD+ production or diversion toward specific KP metabolites was also found to be beneficial in animal models of AKI. Key Messages: KP metabolites are reported to be dysregulated in human observational and animal experimental studies of AKI and CKD. In AKI, the magnitude and direction of changes in the KP depend on the etiology of the damage. In CKD, KP metabolites are altered with the onset and progression of CKD all the way to advanced stages of the disease, including uremia and its related vascular complications. The activation of the KP and diversion to specific sub-branches are currently being explored as therapeutic strategies in these diseases, especially with regards to the immunomodulatory effects of certain KP metabolites. Further elucidation of the KP may hold promise for the development of biomarkers and targeted therapies for these kidney diseases.


Acute Kidney Injury/etiology , Kynurenine/physiology , Renal Insufficiency, Chronic/etiology , Animals , Humans
2.
J Am Soc Nephrol ; 32(11): 2834-2850, 2021 11.
Article En | MEDLINE | ID: mdl-34716244

BACKGROUND: CKD, characterized by retained uremic solutes, is a strong and independent risk factor for thrombosis after vascular procedures . Urem ic solutes such as indoxyl sulfate (IS) and kynurenine (Kyn) mediate prothrombotic effect through tissue factor (TF). IS and Kyn biogenesis depends on multiple enzymes, with therapeutic implications unexplored. We examined the role of indoleamine 2,3-dioxygenase-1 (IDO-1), a rate-limiting enzyme of kynurenine biogenesis, in CKD-associated thrombosis after vascular injury. METHODS: IDO-1 expression in mice and human vessels was examined. IDO-1-/- mice, IDO-1 inhibitors, an adenine-induced CKD, and carotid artery injury models were used. RESULTS: Both global IDO-1-/- CKD mice and IDO-1 inhibitor in wild-type CKD mice showed reduced blood Kyn levels, TF expression in their arteries, and thrombogenicity compared with respective controls. Several advanced IDO-1 inhibitors downregulated TF expression in primary human aortic vascular smooth muscle cells specifically in response to uremic serum. Further mechanistic probing of arteries from an IS-specific mouse model, and CKD mice, showed upregulation of IDO-1 protein, which was due to inhibition of its polyubiquitination and degradation by IS in vascular smooth muscle cells. In two cohorts of patients with advanced CKD, blood IDO-1 activity was significantly higher in sera of study participants who subsequently developed thrombosis after endovascular interventions or vascular surgery. CONCLUSION: Leveraging genetic and pharmacologic manipulation in experimental models and data from human studies implicate IS as an inducer of IDO-1 and a perpetuator of the thrombotic milieu and supports IDO-1 as an antithrombotic target in CKD.


Indican/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/blood , Kynurenine/physiology , Molecular Targeted Therapy , Postoperative Complications/enzymology , Renal Insufficiency, Chronic/enzymology , Thrombosis/enzymology , Vascular Surgical Procedures/adverse effects , Animals , Aorta , Carotid Artery Injuries/complications , Carotid Artery Thrombosis/etiology , Carotid Artery Thrombosis/prevention & control , Culture Media/pharmacology , Enzyme Induction/drug effects , Feedback, Physiological , Female , HEK293 Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/blood , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/drug effects , Postoperative Complications/blood , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Renal Insufficiency, Chronic/drug therapy , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/etiology , Thrombosis/prevention & control , Tryptophan/metabolism , Uremia/blood
3.
Neuropharmacology ; 197: 108753, 2021 10 01.
Article En | MEDLINE | ID: mdl-34389399

The kynurenine (KYN) pathway of tryptophan (TRP) degradation is activated by stress and inflammatory factors. It is now well established that social stress induces the activation of the immune system, with central inflammation and KYN metabolism being two of the main factors linking stress with depression. The aim of the present study was to evaluate the long-lasting changes in the KYN pathway induced by social defeat (SD) associated with the resilience or susceptibility to an increase in the conditioned rewarding effects of cocaine. Mice were exposed to repeated SD and 3 weeks later, a conditioned place preference (CPP) induced by a subthreshold dose of cocaine (1.5 mg/kg) was developed. KYN levels in plasma, cerebellum, hippocampus, striatum and limbic forebrain were studied at the end of the CPP procedure. Changes in the KYN pathway after exposure to pharmacological (oxytocin and indomethacin) and environmental interventions (environmental enrichment) were also evaluated. Our results showed that defeated susceptible (SD-S) mice had higher conditioning scores than resilient mice (SD-R). In addition, although KYN concentration was elevated in all defeated mice, SD-R mice showed smaller increases in KYN concentration in the cerebellum than SD-S mice. Oxytocin or Indomethacin treatment before SD normalized cocaine-induced CPP, although the increase in the KYN pathway was maintained. However, environmental enrichment before SD normalized cocaine-induced CPP and prevented the increase in the KYN pathway. The present study highlights the role of the KYN pathway and anti-inflammatory drugs acting on TRP metabolism as pharmacological targets to potentiate resilience to social stress effects.


Cocaine/pharmacology , Kynurenine/physiology , Resilience, Psychological/drug effects , Reward , Signal Transduction/physiology , Social Defeat , Animals , Cerebellum/drug effects , Cerebellum/metabolism , Conditioning, Operant/drug effects , Environment , Indomethacin/pharmacology , Male , Mice , Mice, Inbred C57BL , Oxytocin/pharmacology , Signal Transduction/drug effects , Tryptophan/physiology
4.
Restor Neurol Neurosci ; 38(4): 343-354, 2020.
Article En | MEDLINE | ID: mdl-32597823

Covid-19 is the acute illness caused by SARS-CoV-2 with initial clinical symptoms such as cough, fever, malaise, headache, and anosmia. After entry into cells, corona viruses (CoV) activate aryl hydrocarbon receptors (AhRs) by an indoleamine 2,3-dioxygenase (IDO1)-independent mechanism, bypassing the IDO1-kynurenine-AhR pathway. The IDO1-kynurenine-AhR signaling pathway is used by multiple viral, microbial and parasitic pathogens to activate AhRs and to establish infections. AhRs enhance their own activity through an IDO1-AhR-IDO1 positive feedback loop prolonging activation induced by pathogens. Direct activation of AhRs by CoV induces immediate and simultaneous up-regulation of diverse AhR-dependent downstream effectors, and this, in turn, results in a "Systemic AhR Activation Syndrome" (SAAS) consisting of inflammation, thromboembolism, and fibrosis, culminating in multiple organ injuries, and death. Activation of AhRs by CoV may lead to diverse sets of phenotypic disease pictures depending on time after infection, overall state of health, hormonal balance, age, gender, comorbidities, but also diet and environmental factors modulating AhRs. We hypothesize that elimination of factors known to up-regulate AhRs, or implementation of measures known to down-regulate AhRs, should decrease severity of infection. Although therapies selectively down-regulating both AhR and IDO1 are currently lacking, medications in clinical use such as dexamethasone may down-regulate both AhR and IDO1 genes, as calcitriol/vitamin D3 may down-regulate the AhR gene, and tocopherol/vitamin E may down-regulate the IDO1 gene. Supplementation of calcitriol should therefore be subjected to epidemiological studies and tested in prospective trials for prevention of CoV infections, as should tocopherol, whereas dexamethasone could be tried in interventional trials. Because lack of physical exercise activates AhRs via the IDO1-kynurenine-AhR signaling pathway increasing risk of infection, physical exercise should be encouraged during quarantines and stay-at-home orders during pandemic outbreaks. Understanding which factors affect gene expression of both AhR and IDO1 may help in designing therapies to prevent and treat humans suffering from Covid-19.


Betacoronavirus/physiology , Coronavirus Infections/physiopathology , Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology , Pandemics , Pneumonia, Viral/physiopathology , Receptors, Aryl Hydrocarbon/physiology , Air Pollutants/adverse effects , COVID-19 , Calcitriol/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Dexamethasone/therapeutic use , Exercise , Feedback, Physiological , Female , Fibrosis/etiology , Gene Expression Regulation/drug effects , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Inflammation/etiology , Kynurenine/physiology , Male , Molecular Targeted Therapy , Multiple Organ Failure/etiology , Obstetric Labor, Premature/etiology , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pregnancy , Pregnancy Complications, Infectious/physiopathology , Receptors, Aryl Hydrocarbon/biosynthesis , Receptors, Aryl Hydrocarbon/genetics , SARS-CoV-2 , Sensation Disorders/etiology , Signal Transduction/drug effects , Signal Transduction/physiology , Thromboembolism/etiology , Tocopherols/therapeutic use , COVID-19 Drug Treatment
5.
Mol Psychiatry ; 25(1): 131-147, 2020 01.
Article En | MEDLINE | ID: mdl-30980044

The kynurenine pathway (KP) plays a critical role in generating cellular energy in the form of nicotinamide adenine dinucleotide (NAD+). Because energy requirements are substantially increased during an immune response, the KP is a key regulator of the immune system. Perhaps more importantly in the context of psychiatry, many kynurenines are neuroactive, modulating neuroplasticity and/or exerting neurotoxic effects in part through their effects on NMDA receptor signaling and glutamatergic neurotransmission. As such, it is not surprising that the kynurenines have been implicated in psychiatric illness in the context of inflammation. However, because of their neuromodulatory properties, the kynurenines are not just additional members of a list of inflammatory mediators linked with psychiatric illness, but in preclinical studies have been shown to be necessary components of the behavioral analogs of depression and schizophrenia-like cognitive deficits. Further, as the title suggests, the KP is regulated by, and in turn regulates multiple other physiological systems that are commonly disrupted in psychiatric disorders, including endocrine, metabolic, and hormonal systems. This review provides a broad overview of the mechanistic pathways through which the kynurenines interact with these systems, thus impacting emotion, cognition, pain, metabolic function, and aging, and in so doing potentially increasing the risk of developing psychiatric disorders. Novel therapeutic approaches targeting the KP are discussed. Moreover, electroconvulsive therapy, ketamine, physical exercise, and certain non-steroidal anti-inflammatories have been shown to alter kynurenine metabolism, raising the possibility that kynurenine metabolites may have utility as treatment response or therapeutic monitoring biomarkers.


Kynurenine/metabolism , Kynurenine/physiology , Mental Disorders/physiopathology , Aging , Animals , Energy Metabolism/physiology , Humans , Mental Disorders/immunology , NAD/metabolism , NAD/physiology , Neurodegenerative Diseases , Signal Transduction , Tryptophan/metabolism
6.
Psychoneuroendocrinology ; 110: 104434, 2019 12.
Article En | MEDLINE | ID: mdl-31525567

BACKGROUND: Kynurenine pathway metabolites and endocannabinoids both exert potent regulatory effects on the immune system, but the relationship between these molecules is unknown. The role of these immunobiological mediators in emotionality and personality traits is not previously characterized. METHODS: Interleukin-6 (IL-6), 2-arachidonoylglycerol (2-AG) and picolinic acid (PIC) were measured in the plasma of physically healthy individuals who had history of mood, anxiety, and personality disorders (n = 96) or who had no history of any psychiatric disorder (n = 56) by DSM-5 Criteria. Dimensional assessments of personality were performed using the Eysenck Personality Questionnaire (EPQ) and the Tridimensional Personality Questionnaire (TPQ). RESULTS: Plasma IL-6 levels were significantly associated with plasma 2-AG levels and plasma PIC levels across all subjects. PIC levels were also negatively associated with 2-AG levels across all subjects, independent of IL-6 levels. In our analysis of the biological determinants of personality factors, we identified significant associations between IL-6 and novelty seeking assessment, and between PIC and neuroticism assessment. CONCLUSIONS: These data provide evidence of a biological link between metabolites of the kynurenine pathway, the endocannabinoid system and IL-6 and suggest that these factors may influence personality traits.


Endocannabinoids/physiology , Inflammation/etiology , Kynurenine/physiology , Personality/physiology , Receptors, Cannabinoid/physiology , Adult , Anxiety Disorders/blood , Anxiety Disorders/epidemiology , Anxiety Disorders/etiology , Arachidonic Acids/blood , Cohort Studies , Endocannabinoids/blood , Endocannabinoids/metabolism , Female , Glycerides/blood , Humans , Inflammation/epidemiology , Inflammation/metabolism , Interleukin-6/blood , Kynurenine/metabolism , Male , Middle Aged , Personality Disorders/blood , Personality Disorders/epidemiology , Personality Disorders/etiology , Picolinic Acids/blood , Receptors, Cannabinoid/metabolism , Signal Transduction/physiology
7.
Psychoneuroendocrinology ; 107: 148-159, 2019 09.
Article En | MEDLINE | ID: mdl-31129488

Allostasis is the process by which the body's physiological systems adapt to environmental changes. Chronic stress increases the allostatic load to the body, producing wear and tear that could, over time, become pathological. In this study, young adult male Wistar Kyoto rats were exposed to an unpredictable chronic mild stress (uCMS) protocol to increase allostatic load. First, physiological systems which may be affected by extended uCMS exposure were assessed. Secondly, 5 weeks of uCMS were used to investigate early adaptations in the previously selected systems. Adverse experiences during developmentally sensitive periods like adolescence are known to severely alter the individual stress vulnerability with long-lasting effects. To elucidate how early life adversity impacts stress reactivity in adulthood, an additional group with juvenile single-housing (JSH) prior to uCMS was included in the second cohort. The aim of this work was to assess the impact of chronic stress with or without adversity during adolescence on two domains known to be impacted in numerous stress-related disorders: mitochondrial energy metabolism and the immune system. Both, uCMS and adolescence stress increased kynurenine and kynurenic acid in plasma, suggesting a protective, anti-oxidant response from the kynurenine pathway. Furthermore, uCMS resulted in a down-regulation of immediate early gene expression in the prefrontal cortex and hippocampus, while only rats with the double-hit of adolescent stress and uCMS demonstrated increased mitochondrial activity in the hippocampus. These results suggest that early life adversity may impact on allostatic load by increasing energetic requirements in the brain.


Kynurenine/metabolism , Mitochondria/metabolism , Stress, Physiological/physiology , Adaptation, Physiological/physiology , Allostasis/physiology , Animals , Brain/metabolism , Cell Respiration/physiology , Energy Metabolism/physiology , Hippocampus/metabolism , Immunity/physiology , Kynurenine/physiology , Male , Prefrontal Cortex/metabolism , Rats , Rats, Inbred WF , Stress, Psychological/metabolism
8.
J Clin Endocrinol Metab ; 104(6): 2334-2342, 2019 06 01.
Article En | MEDLINE | ID: mdl-30715395

CONTEXT: Studies in aged mice support a role for kynurenine, a tryptophan metabolite, in age-induced bone loss; however, the role of kynurenine in human bone metabolism is not well understood. OBJECTIVE: To assess whether the kynurenine level in bone marrow (BM) aspirates, directly reflecting the bone microenvironment, is associated with osteoporosis-related phenotypes and bone biochemical markers. DESIGN AND SETTING: A case-control study conducted in a clinical unit. PARTICIPANTS AND MAIN OUTCOME MEASURES: BM samples were collected from 72 patients at the time of hip surgery for either fragility hip fracture (HF) (n = 27) or for other causes (n = 45). In these samples, kynurenine was measured by liquid chromatography-tandem mass spectrometry, and the levels of tartrate-resistant acid phosphatase 5b (TRAP5b), bone-specific alkaline phosphatase (BSALP), receptor activator of nuclear factor-κB ligand (RANKL), and osteoprotegerin (OPG) were measured by immunoassay. RESULTS: Age was positively correlated with BM kynurenine level. After adjustment for confounders, subjects with fragility HF had a 39.7% higher BM kynurenine level than those without, and the OR per SD increment in BM kynurenine level for fragility HF was 3.80. The BM kynurenine level was inversely associated with bone mass at the total femur. Higher kynurenine concentrations were significantly associated with higher TRAP-5b and RANKL levels, but not with BSALP and OPG levels, in BM plasma. CONCLUSION: These results suggest that increased kynurenine levels during aging may contribute to the bone fragility seen in the elderly through increased bone resorption, with a resultant imbalance in bone remodeling.


Aging/metabolism , Bone and Bones/metabolism , Hip Fractures/etiology , Kynurenine/physiology , Aged , Aged, 80 and over , Bone Density , Bone Marrow/metabolism , Bone Remodeling , Case-Control Studies , Female , Humans , Male , Tryptophan/metabolism
9.
Brain Behav Immun ; 75: 155-162, 2019 01.
Article En | MEDLINE | ID: mdl-30675874

INTRODUCTION: Tryptophan, its downstream metabolites in the kynurenine pathway and neopterin have been associated with inflammation and dementia. We aimed to study the associations between plasma levels of these metabolites and cognitive function in community-dwelling, older adults. METHODS: This cross-sectional study included 2174 participants aged 70-72 years of the community-based Hordaland Health Study. Tryptophan, kynurenine, neopterin and eight downstream kynurenines were measured in plasma. Kendrick Object Learning Test (KOLT), Digit Symbol Test (DST) and the Controlled Oral Word Association Test (COWAT) were all outcomes in standardized Zellner's regression. The Wald test of a composite linear hypothesis of an association with each metabolite was adjusted by the Bonferroni method. Age, body mass index, C-reactive protein, depressive symptoms, diabetes, education, glomerular filtration rate, hypertension, previous myocardial infarction, prior stroke, pyridoxal 5'phosphate, sex and smoking were considered as potential confounders. RESULTS: Higher levels of the kynurenine-to-tryptophan ratio (KTR) and neopterin were significantly associated with poorer, overall cognitive performance (p < 0.002). Specifically, KTR was negatively associated with KOLT (ß -0.08, p = 0.001) and COWAT (ß -0.08, p = 0.001), but not with DST (ß -0.03, p = 0.160). This pattern was also seen for neopterin (KOLT: ß -0.07; p = 0.001; COWAT: ß -0.06, p = 0.010; DST: ß -0.01, p = 0.800). The associations were not confounded by the examined variables. No significant associations were found between the eight downstream kynurenines and cognition. CONCLUSION: Higher KTR and neopterin levels, biomarkers of cellular immune activation, were associated with reduced cognitive performance, implying an association between the innate immune system, memory, and language.


Cognition/physiology , Kynurenine/metabolism , Aged , Biomarkers/blood , Body Mass Index , C-Reactive Protein/metabolism , Cross-Sectional Studies , Female , Humans , Independent Living , Inflammation/blood , Kynurenine/blood , Kynurenine/physiology , Male , Neopterin/blood , Neopterin/metabolism , Neuropsychological Tests , Signal Transduction/physiology , Tryptophan/blood , Tryptophan/metabolism
10.
Psychoneuroendocrinology ; 101: 72-79, 2019 03.
Article En | MEDLINE | ID: mdl-30419374

OBJECTIVE: Cognitive impairment is common among patients with major depressive disorder (MDD), but its pathological mechanism is complex and not fully understood. Evidence suggests that the kynurenine (KYN) pathway may be implicated in the pathophysiology of depression, but few studies have explored the association between the KYN pathway and cognitive impairment in MDD. Our aim was to examine the relationship between cognitive impairment and KYN pathway metabolites in patients with MDD. METHODS: A total of 146 patients with MDD according to DSM-V and 72 healthy controls (HCs) were enrolled, and the severity of depressive symptoms using the 17-item Hamilton Depression Rating Scale (HAMD-17) and cognitive performance including speed of processing, working memory, visual learning and verbal learning were assessed. Blood samples were collected, and serum concentrations of tryptophan (TRP), kynurenine (KYN) and kynurenic acid (KYNA) were measured by liquid chromatography-tandem mass spectrometry. RESULTS: In females with MDD, there was a significant negative association between the KYN level and verbal learning (B=-0.039, adjusted p = 0.018), and the KYN/TRP ratio was negatively correlated with speed of processing (B=-470.086, adjusted p = 0.029), verbal learning (B=-544.251, adjusted p = 0.002) and visual learning (B=-513.777, adjusted p = 0.004). Those associations were not present in male individuals with MDD or in HCs, except for a significant negative correlation between the KYNA/KYN ratio and category fluency (B=-0.373, adjusted p = 0.039) in female HCs. CONCLUSION: Our results suggest that learning function and speed of processing in female MDD were associated with KYN serum level and the KYN/TRP ratio, potentially implicating the KYN pathway in the pathological mechanism of cognitive function in female MDD.


Cognition/physiology , Depressive Disorder, Major/metabolism , Kynurenine/metabolism , Adult , Chromatography, Liquid/methods , Cross-Sectional Studies , Depression/metabolism , Depression/physiopathology , Depressive Disorder, Major/physiopathology , Female , Humans , Kynurenic Acid/blood , Kynurenine/blood , Kynurenine/physiology , Male , Middle Aged , Quinolinic Acid/blood , Tryptophan/blood
11.
J Neuroinflammation ; 15(1): 3, 2018 Jan 04.
Article En | MEDLINE | ID: mdl-29301550

BACKGROUND: This study aims to explore the role of indoleamine-2,3-dioxygenase (IDO)/kynurenine (KYN) pathway of tryptophan (TRY) metabolism in behavioral alterations observed in hepatic encephalopathy (HE) rats. METHODS: Expression levels of proinflammatory cytokines were tested by QT-PCR and ELISA, levels of IDOs were tested by QT-PCR and Western blot, and levels of 5-hydroxytryptamine (5-HT), KYN, TRY, 3-hydroxykynurenine (3-HK), and kynurenic acid (KA) in different brain regions were estimated using HPLC. Effects of the IDO direct inhibitor 1-methyl-L-tryptophan (1-MT) on cognitive, anxiety, and depressive-like behavior were evaluated in bile duct ligation (BDL) rats. RESULTS: Increased serum TNF-α, IL-1ß, and IL-6 levels were shown in rats 7 days after BDL, and these increases were observed earlier than those in the brain, indicating peripheral immune activation may result in central upregulation of proinflammatory cytokines. Moreover, BDL rats showed a progressive decline in memory formation, as well as anxiety and depressive-like behavior. Further study revealed that IDO expression increased after BDL, accompanied by a decrease of 5-HT and an increase of KYN, as well as abnormal expression of 3-HK and KA. The above results affected by BDL surgery were reversed by IDO inhibitor 1-MT treatment. CONCLUSION: Taken together, these findings indicate that (1) behavioral impairment in BDL rats is correlated with proinflammatory cytokines; (2) TRY pathway of KYN metabolism, activated by inflammation, may play an important role in HE development; and (3) 1-MT may serve as a therapeutic agent for HE.


Hepatic Encephalopathy/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology , Inflammation Mediators/metabolism , Kynurenine/physiology , Signal Transduction/physiology , Tryptophan/metabolism , Animals , Bile Ducts/metabolism , Bile Ducts/pathology , Disease Models, Animal , Hepatic Encephalopathy/pathology , Ligation/adverse effects , Male , Rats , Rats, Wistar
12.
Chem Res Toxicol ; 29(9): 1369-80, 2016 09 19.
Article En | MEDLINE | ID: mdl-27482758

Metabolism of the essential amino acid L-tryptophan (TRP) is implicated in a number of neurological conditions including depression, neurodegenerative diseases, and cancer. The TRP catabolite kynurenine (KYN) has recently emerged as an important neuroactive factor in brain tumor pathogenesis, with additional studies implicating KYN in other types of cancer. Often highlighted as a modulator of the immune response and a contributor to immune escape for malignant tumors, it is well-known that KYN has effects on the production of the coenzyme nicotinamide adenine dinucleotide (NAD(+)), which can have a direct impact on DNA repair, replication, cell division, redox signaling, and mitochondrial function. Additional effects of KYN signaling are imparted through its role as an endogenous agonist for the aryl hydrocarbon receptor (AhR), and it is largely through activation of the AhR that KYN appears to mediate malignant progression in gliomas. We have recently reported on the ability of KYN signaling to modulate expression of human DNA polymerase kappa (hpol κ), a translesion enzyme involved in bypass of bulky DNA lesions and activation of the replication stress response. Given the impact of KYN on NAD(+) production, AhR signaling, and translesion DNA synthesis, it follows that dysregulation of KYN signaling in cancer may promote malignancy through alterations in the level of endogenous DNA damage and replication stress. In this perspective, we discuss the connections between KYN signaling, DNA damage tolerance, and genomic instability, as they relate to cancer.


Genomic Instability/physiology , Glioma/physiopathology , Kynurenine/physiology , Signal Transduction/physiology , DNA Replication/physiology , Humans , Neoplasms/physiopathology
14.
J Exp Bot ; 67(15): 4581-91, 2016 08.
Article En | MEDLINE | ID: mdl-27307546

Gravitropism refers to the growth or movement of plants that is influenced by gravity. Roots exhibit positive gravitropism, and the root cap is thought to be the gravity-sensing site. In some plants, the root cap requires light irradiation for positive gravitropic responses. However, the mechanisms regulating this phenomenon are unknown. We herein report that maize roots exposed to white light continuously for ≥1-2h show increased indole-3-acetic acid (IAA) levels in the root tips, especially in the transition zone (1-3mm from the tip). Treatment with IAA biosynthesis inhibitors yucasin and l-kynurenine prevented any increases in IAA content and root curvature under light conditions. Analyses of the incorporation of a stable isotope label from tryptophan into IAA revealed that some of the IAA in roots was synthesized in the root apex. Furthermore, Zmvt2 and Zmyuc gene transcripts were detected in the root apex. One of the Zmyuc genes (ZM2G141383) was up-regulated by light irradiation in the 0-1mm tip region. Our findings suggest that IAA accumulation in the transition zone is due to light-induced activation of Zmyuc gene expression in the 0-1mm root apex region. Light-induced changes in IAA levels and distributions mediate the maize root gravitropic U-turn.


Gravitropism/physiology , Indoleacetic Acids/metabolism , Meristem/physiology , Plant Growth Regulators/physiology , Plant Root Cap/physiology , Zea mays/physiology , Gene Expression Regulation, Plant/physiology , Gene Expression Regulation, Plant/radiation effects , Kynurenine/metabolism , Kynurenine/physiology , Light , Meristem/metabolism , Metabolic Networks and Pathways/physiology , Plant Growth Regulators/biosynthesis , Plant Growth Regulators/metabolism , Plant Root Cap/metabolism , Triazoles/metabolism , Zea mays/metabolism
15.
Arthritis Rheumatol ; 68(7): 1688-99, 2016 07.
Article En | MEDLINE | ID: mdl-26866723

OBJECTIVE: Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme that converts tryptophan to kynurenine, is driven in part by type I and type II interferons (IFNs). Naive T cells are polarized into FoxP3+ Treg cells upon exposure to either IDO+ cells or kynurenine. Recent studies have suggested that the kynurenine pathway reflects a crucial interface between the immune and nervous system. The aims of the present study were to evaluate whether Treg cell levels are elevated, in conjunction with increased IDO activity, in patients with primary Sjögren's syndrome (SS) who are positive for the IFN gene expression signature, and to investigate the downstream kynurenine pathway in these patients. METHODS: Serum from 71 healthy controls, 58 IFN-negative patients with primary SS, and 66 IFN-positive patients with primary SS was analyzed using high-performance liquid chromatography to measure the levels of tryptophan and kynurenine. Expression levels of messenger RNA (mRNA) for IDO and downstream enzymes in the kynurenine pathway were assessed in CD14+ monocytes using real-time quantitative polymerase chain reaction. CD4+CD45RO+ T helper memory cell populations were analyzed by flow cytometry. RESULTS: Significantly increased levels of IDO activity (assessed as the kynurenine:tryptophan ratio) (P = 0.0054) and percentages of CD25(high) FoxP3+ Treg cells (P = 0.039) were observed in the serum from IFN-positive patients with primary SS, and these parameters were significantly correlated with one another (r = 0.511, P = 0.002). In circulating monocytes from IFN-positive patients with primary SS, the expression of IDO1 mRNA was up-regulated (P < 0.0001), and this was correlated with the IFN gene expression score (r = 0.816, P < 0.0001). Interestingly, the proapoptotic and neurotoxic downstream enzyme kynurenine 3-monooxygenase was up-regulated (P = 0.0057), whereas kynurenine aminotransferase I (KATI) (P = 0.0003), KATIII (P = 0.016), and KATIV (P = 0.04) were down-regulated in IFN-positive patients with primary SS compared to healthy controls. CONCLUSION: These findings demonstrate enhanced IDO activity in conjunction with increased percentages of CD25(high) FoxP3+ Treg cells in primary SS patients who carry the IFN signature. In addition, IFN-positive patients with primary SS exhibit an imbalanced kynurenine pathway, with evidence of a shift toward potentially more proapoptotic and neurotoxic metabolites. Intervening in these IFN- and IDO-induced immune system imbalances may offer a new array of possibilities for therapeutic interventions in patients with primary SS.


Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferons/blood , Kynurenine/physiology , Sjogren's Syndrome/blood , Sjogren's Syndrome/immunology , T-Lymphocytes, Regulatory/enzymology , Female , Humans , Male , Middle Aged , Signal Transduction
16.
PLoS One ; 11(1): e0146279, 2016.
Article En | MEDLINE | ID: mdl-26727596

Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing intracellular enzyme of the L-kynurenine pathway, causes preneoplastic cells and tumor cells to escape the immune system by inducing immune tolerance; this mechanism might be associated with the development and progression of human malignancies. In the present study, we investigated the role of IDO in diethylnitrosamine (DEN)-induced hepatocarcinogenesis by using IDO-knockout (KO) mice. To induce hepatocellular carcinoma (HCC), hepatic adenoma, and preneoplastic hepatocellular lesions termed foci of cellular alteration (FCA), male IDO-wild-type (WT) and IDO-KO mice with a C57BL/6J background received a single intraperitoneal injection of DEN at 2 weeks of age. The mice were sacrificed to evaluate the development of FCA and hepatocellular neoplasms. HCC overexpressed IDO and L-kynurenine compared to surrounding normal tissue in the DEN-treated IDO-WT mice. The number and cell proliferative activity of FCAs, and the incidence and multiplicity of HCC were significantly greater in the IDO-WT than in the IDO-KO mice. The expression levels of the IDO protein, of L-kynurenine, and of IFN-γ, COX-2, TNF-α, and Foxp3 mRNA were also significantly increased in the DEN-induced hepatic tumors that developed in the IDO-WT mice. The mRNA expression levels of CD8, perforin and granzyme B were markedly increased in hepatic tumors developed in IDO-KO mice. Moreover, Foxp3-positive inflammatory cells had infiltrated into the livers of DEN-treated IDO-WT mice, whereas fewer cells had infiltrated into the livers of IDO-KO mice. Induction of IDO and elevation of L-kynurenine might play a critical role in both the early and late phase of liver carcinogenesis. Our findings suggest that inhibition of IDO might offer a promising strategy for the prevention of liver cancer.


Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology , Liver Neoplasms, Experimental/enzymology , Neoplasm Proteins/physiology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/immunology , Adenoma/chemically induced , Adenoma/enzymology , Adenoma/immunology , Animals , CD8 Antigens/biosynthesis , CD8 Antigens/genetics , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Diethylnitrosamine , Disease Progression , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Granzymes/biosynthesis , Granzymes/genetics , Immune Tolerance , Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Kynurenine/biosynthesis , Kynurenine/physiology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Proteins/genetics , Pore Forming Cytotoxic Proteins/biosynthesis , Pore Forming Cytotoxic Proteins/genetics , Precancerous Conditions/chemically induced , Precancerous Conditions/enzymology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics
17.
Exp Hematol ; 44(1): 60-7.e1, 2016 Jan.
Article En | MEDLINE | ID: mdl-26325330

It is known that inadequate erythropoietin (EPO) production contributes to the pathogenesis of anemia of inflammation, although the exact molecular mechanism is unknown. Aryl hydrocarbon receptor (AhR) may compete with hypoxia-inducible factor 2α (HIF-2α), the master regulator of EPO production, for binding with HIF-1ß. The effect of kynurenine, an endogenous AhR activator that increases in inflammation, on EPO and hepcidin production was evaluated. HepG2 cells were treated with the hypoxia mimetic CoCl2, kynurenine, the AhR inhibitor CH223191, and combinations of these. EPO and hepcidin production was measured with enzyme-linked immunosorbent assay. HIF-2α and CYP1A1 levels, a transcriptional target of AhR, were assessed by Western blotting. CoCl2 increased EPO production and decreased hepcidin and CYP1A1. Kynurenine exerted the opposite effects. Wherever CH223191 was added, the inhibitor overcorrected kynurenine-induced alterations in both the presence and the absence of CoCl2. Also, treatment with CH223191 alone increased EPO and decreased hepcidin, indicating that there is a degree of constitutive AhR activation, possibly by other endogenous AhR activators. In conclusion, kynurenine, by competing with HIF-2α, may contribute to anemia of inflammation by decreasing EPO and increasing hepcidin production. The fact that inactivation of AhR alone induces EPO makes this transcription factor a potential therapeutic target in situations that require increased EPO.


Anemia/etiology , Erythropoietin/antagonists & inhibitors , Hepcidins/biosynthesis , Inflammation/complications , Kynurenine/physiology , Receptors, Aryl Hydrocarbon/physiology , Erythropoietin/biosynthesis , Hep G2 Cells , Humans
18.
J Neuroinflammation ; 12: 110, 2015 May 30.
Article En | MEDLINE | ID: mdl-26025142

UNLABELLED: During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims. Acute QUIN levels were further correlated with outcome scores to explore its prognostic value in TBI recovery. METHODS: Twenty-eight patients with severe TBI (GCS ≤ 8, three patients had initial GCS = 9-10, but rapidly deteriorated to ≤8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry. RESULTS: In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores. CONCLUSION: TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUIN's detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.


Brain Injuries/diagnosis , Brain Injuries/metabolism , Kynurenine/physiology , Neurotoxins/cerebrospinal fluid , Quinolinic Acid/cerebrospinal fluid , Signal Transduction/physiology , Adolescent , Adult , Aged , Biomarkers/metabolism , Brain/metabolism , Brain Injuries/physiopathology , Case-Control Studies , Female , Glasgow Outcome Scale , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Middle Aged , Prognosis , RNA, Messenger/metabolism , Tryptophan/blood , Young Adult
19.
Intern Emerg Med ; 10(4): 413-21, 2015 Jun.
Article En | MEDLINE | ID: mdl-25708356

Kynurenine pathway, the quantitatively main branch of tryptophan metabolism, has been long been considered a source of nicotinamide adenine dinucleotide, although several of its products, the so-called kynurenines, are endowed with the capacity to activate glutamate receptors, thus potentially influencing a large group of functions in the central nervous system (CNS). Migraine, a largely unknown pathology, is strictly related to the glutamate system in the CNS pathologic terms. Despite the large number of studies conducted on migraine etio-pathology, the kynurenine pathway has been only recently linked to this disease. Nonetheless, some evidence suggests an intriguing role for some kynurenines, and an exploratory study on the serum kynurenine level might be helpful to better understand possible alterations of the kynurenine pathway in patients suffering from migraine.


Kynurenine/physiology , Metabolic Networks and Pathways/physiology , Migraine Disorders/etiology , Humans , Migraine Disorders/metabolism , Migraine Disorders/physiopathology
...